
    
      


Stefan Hornburg (Racke)

Ansible Provisioning








      

    

  
    
      

Target hosts




      

    

  
    
      

Preparing target host




The only inevitable requirements for the target are a SSH server and Python.




Modern distributions are using Python 3, therefore we recommend to force
Ansible using it:




# group_vars/all.yml
ansible_python_interpreter: /usr/bin/python3




Otherwise Ansible uses Python 2 if available on the system.




This applies to:




	

Debian 9 (Stretch) and later





	

CentOS 8










      

    

  
    
      

Alpine




Install Python3:




~ apk update
~ apk add --quiet python3




      

    

  
    
      

Arch Linux




Synchronizing package databases:




$ sudo pacman -Fy




Install Python3:




$ sudo pacman -S python3




      

    

  
    
      

Debian




On a Debian host with minimal setup you can install Python as follows:




% apt-get update
% apt-get install python3




It is also useful to install python3-apt on Debian hosts. This allows you
to run the playbook in check mode on a pristine system.




      

    

  
    
      

Gentoo




Installing packages requires the equery program:




$ sudo emerge app-portage/gentoolkit




      

    

  
    
      

FreeBSD




Install Python3:




~# pkg install python3




Adjust ansible_python_interpreter variable:




ansible_python_interpreter: /usr/local/bin/python3




      

    

  
    
      

RedHat




RedHat 8 and derivatives like CentOS and Alma Linux OS don't come with
Python pre-installed,




~ dnf update
~ dnf install -y python3




      

    

  
    
      

Setup SSH connection details for all hosts




In the file group_vars/all:




---
ansible_connection: ssh
ansible_user: ansible




      

    

  
    
      

Connection variables




	ansible_host

	

IP address of the target host




	ansible_user

	

Ansible user on target host




	ansible_connection

	

Connection method (defaults to ssh)




	ansible_ansible_ssh_private_key

	

Private key file on the controller









Example:




test_vml ansible_host=192.168.6.66 ansible_user=ansible ansible_ssh_private_key_file=/home/mynames/keys/example.pem




      

    

  
    
      

Troubleshooting




      

    

  
    
      

Shared connection to 10.11.12.13




The ansible_user needs to be in the group sudo on Ubuntu host.




Oct  9 17:59:25 mytestbox sudo: nevairbe : command not allowed ; TTY=pts/1 ; PWD=/home/nevairbe ; USER=root ; COMMAND=/bin/sh -c echo BECOME-SUCCESS-xrqnygkastkbrykkzzvttjbhvzajdltm ; /usr/bin/python3 /home/nevairbe/.ansible/tmp/ansible-tmp-1696867164.8682141-9644-176952864770288/AnsiballZ_setup.py




      

    

  
    
      

Development and Debugging




      

    

  
    
      

Check mode




The Check mode is very useful to simulate what will be applied to the host without actually changing anything.




However, some tasks don't work in check mode. You can choose either to ignore errors in check mode or skip these tasks altogether. Please note that the command module automatically skip its tasks in check mode.




Ignore errors in check mode:




- name: Check if the elasticsearch package is installed
  shell: dpkg-query -W -f'${Status}' elasticsearch
  ignore_errors: "{{ ansible_check_mode }}"




Skip tasks in check mode:




- name: Check if the elasticsearch package is installed
  shell: dpkg-query -W -f'${Status}' elasticsearch
  when: not ansible_check_mode




      

    

  
    
      


YAML callback plugin




The default output for errors is hard to read, thus it is recommended to configure the YAML callback plugin in ansible.cfg:




[defaults]
...
# Use the YAML callback plugin.
stdout_callback = yaml
# Use the stdout_callback when running ad-hoc commands.
bin_ansible_callbacks = True




Thanks to Jeff Geerling for his blog post about this feature.




This callback can also be turned out by an environment variable:




export ANSIBLE_STDOUT_CALLBACK=yaml




Reference: https://docs.ansible.com/ansible/latest/plugins/callback.html




      

    

  
    
      

Inventory




      

    

  
    
      

Group names




The following characters are invalid group names: spaces, hyphens, and preceding numbers.




      

    

  
    
      

Tasks




A task calls an Ansible module and can be modified by task keywords, e.g. conditions or delegations.




      

    

  
    
      

Common Tasks




      

    

  
    
      

Directories and Files




Create directory:




- name: Create DKIM directory
  file:
    state: directory
    path: "/etc/exim4/dkim"
    owner: root




Copy file:




- name: Install DKIM domain setup script
  copy:
    src: "dkimsetup"
    dest: "/usr/local/sbin/dkimsetup"
    owner: root
    mode: 0755




Create file from template:




- name: Add DKIM settings
  template:
    src: "dkim_macros.j2"
    dest: "/etc/exim4/conf.d/main/00_dkim_macros"
    owner: root




Add or change line in a file:




- name: Register Foo's certificate chain in LDAP configuration file
  lineinfile:
    dest: /etc/openldap/ldap.conf
    regex: '^TLS_CACERT\s+'
    line: 'TLS_CACERT /etc/ssl/foo-chain.pem'




      

    

  
    
      

Packages




You can install distribution packages with the generic package module or
with the distribution specific module.




Install Git package:




- name: Install Git package
  package:
    name: git




      

    

  
    
      

Cronjobs




Example for creating a cronjob:




- name: Create cronjob
  cron:
    name: Mrad backup
    minute: 12
    hour: 22
    user: root
    job: "/usr/local/bin/mrad /etc/mrad.cfg"
    cron_file: mrad




This creates a file mrad in the directory /etc/cron.d as per the cron_file attribute.




The contents are:




#Ansible: Mrad backup
12 22 * * * root /usr/local/bin/mrad /etc/mrad.cfg




      

    

  
    
      

Use Cases




      

    

  
    
      

Replace content in files




For configuration and other text files you can use either lineinfile or blockinfile module.




There also other modules for specific formats, e.g. the xml module for XML files.




      

    

  
    
      

Keywords




      

    

  
    
      

environment




- name: Install sensor package for Ubuntu
  apt:
    name: sensor
  environment:
    SERVER_ADDRESS: "{{ cyber_server_address }}"
    CUSTOMER_ID: "{{ cyber_customer_id }"




      

    

  
    
      

Jinja2 templates




Jinja2 templates are used all over space. First in mind are template files for the template task, but they can used in other places like in when conditions.




Jinja has nice features, e.g. template inheritance.




You might consider to add a header line, which makes system administrators aware of the origin on the file, e.g.:




{{ ansible_managed | comment }}




Default output is:




# Ansible managed




      

    

  
    
      


Filters




Reference: https://docs.ansible.com/ansible/latest/user_guide/playbooks_filters.html




In addition to the Ansible filters you can also use Jinja filters.




      

    

  
    
      

Various Filters




      

    

  
    
      

default




This filter returns the value 443 if the variable https_port is not defined.




"{{ https_port | default(443) }}"




If you use the default filter with the special variable omit, the parameter would not be passed to
the ansible module. That allows us to gracefully fall back to the default of the module parameter.




- name: Create PostgreSQL database
  postgresql_db:
    name: "{{ dbname }}"
    owner: "{{ dbuser | default(omit) }}"




Alias for this filter: d




      

    

  
    
      

basename




Returns the file name from a file path. Useful with with_fileglob.




      

    

  
    
      


reverse (Jinja filter)




This reverses a string, a list or any other Python object.




      

    

  
    
      


List filters




See also how to use Python syntax to manipulate lists.




      

    

  
    
      


first




Returns first element of a list.




      

    

  
    
      


join




Joins list members into a string:




 {{ monitoring_server_ips | join(' ') }}




This is filter is also useful to print the output from a command into a file, line by line:




- copy:
    content: "{{ grep_results.stdout_lines | join('\n') }}"
    dest: /tmp/grep.txt




      

    

  
    
      


length




Counts the members of the list which is convenient in a condition:




when: mylist | length




      

    

  
    
      


map




The map filter has a number of different usages.




It can be used to apply any of the string filters to all elements of the list, e.g.




"{{ services.split(',') | map('trim') | list }}"




Example using basename filter




Extract





If you have a list of dictionaries and you want a single value from each dictionary, apply
attribute map:




{{ nginx_vhosts | map(attribute='server_name') | list }}




      

    

  
    
      


select




This filter selects any elements with matches a given condition:




{{ omd_versions.stdout_lines | select('search', '\\s+\\(default\\)$') }}




The difference between select('search') and select('match') is that the latter
requires the whole element to match.




      

    

  
    
      


selectattr




This select all entries from a list of dictionaries where one attribute from
the dictionary fulfils a certain condition.




{{ rest_api_fields | selectattr('type', 'equalto', 'string') | list }}




      

    

  
    
      


reject




This filter removes elements from a list of strings.




In the following example we remove all filenames which contain the string junk:




{{ filenames | reject('search', 'junk') | list }}




      

    

  
    
      


sort




This filter sorts a list, which can be useful to achieve a stable output. For example, the list of hosts in a group doesn't maintain an order.




{% for host in groups['all'] | sort %}
{{ hostvars[host]['inventory_hostname_short'] }} {{ hostvars[host['ansible_facts']['eth0']['ipv4']['address'] }}
{% endfor %}




For list consisting of dictionaries, you can also sort by an attribute.




Here we are taking the list of files registered by the find module and sorting them by their modification time (oldest first):




{{ find_result.files | sort(attribute='mtime') | list }}




You can also sort in reverse order (newest first):




{{ find_result.files | sort(attribute='mtime',reverse=True) | list }}




      

    

  
    
      


unique




Reduces a list to unique items by omitting duplicate ones.




      

    

  
    
      


Dictionary filters




      

    

  
    
      


dict2items




Turns a dictionary in a list of dictionaries. Each entry in the new list has
a key attribute with the key in the orginal dictionary and a value attribute
with value from the original dictionary.




This is handy to loop over a dictionary:




{% for vg in ansible_lvm.vgs | dict2items %}
{{ vg.key }} {{ vg.value.free_g }} GB
{% endfor %}




      

    

  
    
      


String filters




      

    

  
    
      


capitalize




Uppercases first character of the string.




{{ "bullseye" | capitalize }}
# => 'Bullseye'




See filter title for uppercasing the first character of every word.




      

    

  
    
      


comment




Turns string into a comment. This is especially useful for multi-line strings. By default the filter uses the # sign.




      

    

  
    
      


lower (Jinja filter)




Converts whole string to lowercase.




      

    

  
    
      


password_hash




Encrypts string with given method:




{{ user_password | password_hash('bcrypt') }}




      

    

  
    
      


regex_findall




This filter can be used to extract strings, e.g. a form value from HTML retrieved by the uri module.




Form element:




<input type="hidden" name="csrftoken" value="db788e6feb8a4927db84d6c0da1dfe67" />




Filter to extract the value:




 "{{ sympa_response.content | regex_findall('name=\"csrftoken\" value=\"(.*)\"') | first }}"




Result: db788e6feb8a4927db84d6c0da1dfe67




      

    

  
    
      


regex_replace




Replaces match of regular expression.




If you want to replace a multiline string, e.g. a comment:




/*
Get rid of me
*/

Keep me




You can't use .* here as the dot doesn't match the newline.
It works if you specify a character class with whitespace and non whitespace:




regex_replace('/\\*([\\s\\S]*)\\*/', '')




      

    

  
    
      


regex_search




Compares string with a regular expression and returns the match.




For example to get the numeric part from the hostname of the target:




- hosts: fedora33-text-box
  tasks:
    debug:
      msg: "{{ inventory_hostname | regex_search ('[0-9]+') }}"




This results in the following output:




TASK [debug] *******************************************************************
ok: [fedora33-test-box] =>
  msg: '33'




You can also capture part of the match:




- name: Determine version of RPM package to install on the server
  set_fact:
    rpm_package_version: "{{ rhn_ssl_tool.stdout | regex_search(regexp,'\\1') | first }}"
   vars:
     regexp: 'rhn-org-httpd-ssl-key-pair-spacewalk7-(.*).noarch.rpm'




      

    

  
    
      


title
Converts first character of every word to uppercase.




{{ "foo bar" | title }}
# => 'Foo Bar'




      

    

  
    
      


trim




Removes leading and trailing whitespace.




      

    

  
    
      


upper (Jinja filter)




Converts whole string to uppercase.




      

    

  
    
      


Numeric filters




      

    

  
    
      


pow




Calculate 1 GB:




1024 | pow(3)




      

    

  
    
      


round




Rounds a number with or without decimal points:




10.5 | round => 11
10.444 | round(2) => 10.44




      

    

  
    
      


Data filters




      

    

  
    
      


json_query




As a JSON query can result in multiple matches, the json_query filter
returns a list.




Uses JSON Matching Expression paths (JMESPATH).




It requires the jmespath Python library to be installed on the controller.




      

    

  
    
      


Type filters




      

    

  
    
      


int




Converts to integer type. Useful for numerical comparison between a variable and an integer:




ansible_distribution_major_version|int >= 10




      

    

  
    
      


string




Converts to string type.




- name: Configure IPv6
  ansible.posix.sysctl:
    name: "{{ item }}"
    value: "{{ ipv6_disabled | string }}"
  loop:
    - net.ipv6.conf.default.disable_ipv6
    - net.ipv6.conf.lo.disable_ipv6
    - net.ipv6.conf.all.disable_ipv6




      

    

  
    
      


Tests




Reference for tests builtin into Jinja: https://jinja.palletsprojects.com/en/2.11.x/templates/#list-of-builtin-tests




      

    

  
    
      


defined




Whether a variable is defined or not.




      

    

  
    
      


divisibleby




Whether a number is divisble without fraction. Can be useful in loops to
create batches:




{% for email in addresses %}{{ email }}{% if loop.index is divisibleby 10 %}{{ '\n -}}{% else %};{% endif %}{% endfor %}




      

    

  
    
      


sameas




Check if variable internet_access is true:




- name: Ensure that APT cache is up-to-date
  apt:
    update_cache: true
    cache_valid_time: 14400
  when: internet_access is sameas true




      

    

  
    
      


success




Determines if a task was successful by looking at a variable registered by
the task. Useful in combination with the until task keyword.




      

    

  
    
      


Conditions




Don't use curly braces in the conditions.




      

    

  
    
      


Regular expressions




Regular expressions are used by the regex_findall and regex_replace filters.




      

    

  
    
      

Variables and facts




Facts are information gathered by Ansible, usually by running a setup task
before executing other tasks.




TASK [Gathering Facts] *********************************************************
ok: [buster-test-box]




Facts are accessible as variables.




      

    

  
    
      

Magic variables




Magic variables are automatically set by the Ansible but can't be overridden.




Commonly used magic variables are:




	groups

	

map with all groups and the corresponding hosts




	inventory_hostname

	

full hostname as specified in the inventory, e.g. foo.example.com




	inventory_hostname_short

	

short version of inventory_hostname, e.g. foo




	inventory_dir

	

useful to locate resources relative to the inventory directory









The complete list is available in the Ansible documentation.




      

    

  
    
      


Facts: OS variables




      

    

  
    
      

ansible_os_family and ansible_distribution




A list of common OS families and their distributions:




	Debian

	

Debian, Ubuntu, Kali




	RedHat

	

RedHat, CentOS, Fedora




	Suse

	

SLES, OpenSUSE




	FreeBSD

	

FreeBSD




	Gentoo

	

Gentoo




	Alpine

	

Alpine




	Archlinux

	

Archlinux









      

    

  
    
      

ansible_distribution_release





As code names for releases are used only by Debian based distributions, this
variable makes only sense for distributions in the Debian ansible_os_family.




	Debian 12

	

bookworm




	Debian 11

	

bullseye




	Debian 10

	

buster




	Debian 9

	

stretch




	Ubuntu 22.04

	

jammy




	Ubuntu 20.04

	

focal




	Ubuntu 18.04

	

bionic




	Ubuntu 16.04

	

xenial









      

    

  
    
      

ansible_distribution_version




This is the distribution version number, e.g 10.5 for Debian buster.




      

    

  
    
      


ansible_distribution_major_version




	Debian Jessie

	

8




	Debian Stretch

	

9




	Debian Buster

	

10




	Ubuntu Xenial

	

16




	Ubuntu Bionic

	

18




	Ubuntu Focal + Ubuntu Groovy

	

20




	Fedora 31

	

31




	SLES15

	

15




	Gentoo

	

2




	Kali

	

2020 (current year)









You can use this variable to install a Debian package only on releases that comes with that package:




- name: Install certbot package(s)
  apt:
    name:
      - certbot
  when:
    - ansible_distribution == 'Debian'
    - ansible_distribution_major_version|int >= 10




      

    

  
    
      

ansible_architecture




This shows you the main architecture for your OS.




 
  
   	
 Family 
   
   	
 Architecture 
   
  

 
 
  
   	
 Alpine 
   
   	
 x86_64 
   
  

  
   	
 Archlinux 
   
   	
 x86_64 
   
  

  
   	
 Debian 
   
   	
 x86_64 
   
  

  
   	
 FreeBSD 
   
   	
 amd64 
   
  

  
   	
 Gentoo 
   
   	
 x86_64 
   
  

  
   	
 RedHat 
   
   	
 x86_64 
   
  

  
   	
 Suse 
   
   	
 x86_64 
   
  

 




      

    

  
    
      

ansible_kernel




This shows you the kernel version, e.g. 5.10.0-9-amd64.




      

    

  
    
      

ansible_machine_id




The machine id (UUID) for the target, which is stored in /etc/machine_id,
e.g. 1ff77447cd174f4a9d7e37aed637c388.




      

    

  
    
      

ansible_service_mgr




Service manager on the target. Most modern distributions are using systemd.




 
  
   	
 Distribution 
   
   	
 Service manager 
   
   	
 Using it since 
   
  

  
   	
 Alpine 
   
   	
 service 
   
   	
 
   
  

  
   	
 Archlinux 
   
   	
 systemd 
   
   	
 
   
  

  
   	
 CentOS 
   
   	
 systemd 
   
   	
 CentOS 7 
   
  

  
   	
 Debian 
   
   	
 systemd 
   
   	
 Debian 8 
   
  

  
   	
 Fedora 
   
   	
 systemd 
   
   	
 
   
  

  
   	
 FreeBSD 
   
   	
 bsdinit 
   
   	
 
   
  

  
   	
 Gentoo 
   
   	
 openrc 
   
   	
 
   
  

  
   	
 Suse 
   
   	
 systemd 
   
   	
 
   
  

 




      

    

  
    
      


Facts: Memory




ansible_memory_mb provides memory information in Megabytes:




nocache:
  free: 828
  used: 1154
real:
  free: 82
  total: 1982
  used: 1900
swap:
  cached: 0
  free: 0
  total: 0
  used: 0




      

    

  
    
      

Facts: Networks




ansible_interfaces are a list of the network interfaces on the target host.




Example contents:




ansible_interfaces:
  - lo
  - enp2s0
  - wlp0s20f3




ansible_default_ipv4 points to the interface used for the default route.
In most cases it can be used to determine the "main IP address" for a
server.




Example contents of the ansible_default_ipv4 variable:




ansible_default_ipv4:
    address: 10.0.2.15
    alias: eth0
    broadcast: 10.0.2.255
    gateway: 10.0.2.2
    interface: eth0
    macaddress: 08:00:27:8d:c0:4d
    mtu: 1500
    netmask: 255.255.255.0
    network: 10.0.2.0
    type: ether




The variable ansible_all_ipv4_addresses is list of all IPv4 addresses on the target
host with the exception of addresses from the loopback interface
(127.0.0.0/8 address block).




Example contents:




["192.168.2.130", "141.57.69.174", "192.168.2.112"]




      

    

  
    
      

Facts: SELinux




ansible_selinux




      

    

  
    
      

Facts: Service Manager




In order to determine whether the host uses Systemd you can check the
*ansible_service_mgr" variable.




      

    

  
    
      


Connection variables




	ansible_user

	

user name used for connecting to the target host









Reference: https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html#connecting-to-hosts-behavioral-inventory-parameters




      

    

  
    
      


Playbook variables




      

    

  
    
      


ansible_run_tags




List of tags passed to ansible-playbook. Using --tags=certbot,nginx
results in:




ansible_run_tags:
  - nginx
  - certbot




Without --tags the list contains one element all:




ansible_run_tags:
  - all




      

    

  
    
      


Dynamic variables with set_fact




The set_fact module allows you to generate variables from other variables (from inventory,
register, ...).




      

    

  
    
      


Extract output from a command in a loop




It can be a challenge to find out how to use set_fact based on a previous command in
a loop, but it is quiet simple if you use the sum filter:




- set_fact:
    modules_list:
      "{{ command_output.results | sum(attribute='stdout_lines', start=[]) }}"




      

    

  
    
      

Access facts of other hosts




You can access variables for other hosts from the current inventory through the hostvars array.




      

    

  
    
      

Python




You can apply standard Python methods to variables.




      

    

  
    
      

String methods




Useful methods are join, split, startswith and endswith.




You can use a regular expression instead of startswith or endswith, but
these methods improve the readablility.




In the following we check if the listen address is a Unix socket. If not we
configure the allowed clients for TCP address.




{% if item.pool_listen.startswith('/') == false %}
listen.allowed_clients = {{ item.pool_listen_allowed_clients | default('127.0.0.1', true) }}
{% endif %}




See also: https://docs.python.org/3/library/stdtypes.html#string-methods.




      

    

  
    
      

Slicing




Slicing can be used for strings and lists with the same syntax
[start:end]. The first element is 0, so [1:] removes the first character
from a string respective the first element of an array.




Returns the string represented by the variable backup_base_directory with the first character removed:




{{ backup_base_directory[1:] }}




Removes subdomain to use as cookie domain:




cookie_domain: ".{{ app_domain.split('.')[1:] | join('.') }}"




      

    

  
    
      


Lists




Lists can be combined with the + operator:




- set_fact: Combine two arrays
    myarray: "{{ myarray + youarray }}"




This can also used to add element(s) to a list, just wrap
them in a new list []:




- set_fact: Add element to array
    myarray: "{{ myarray + ['element'] }}"




      

    

  
    
      

Dicts




This is good example to prevent variable nesting while inside a Jinja
template:




Environment="FCGI_CHILDREN={{ sympa.web.get(unit_name + '_procs') }}"




      

    

  
    
      

Precedence




https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#ansible-variable-precedence




      

    

  
    
      

Lookups




Lookups can be used for file contents, templates, environment variable and various other things.




      

    

  
    
      

Files




The lookup takes place on the controller.




Ansible will lookup the file in multiple directories if you are using a relative path. Run the playbook with -vvvvv to see the paths to these directories.




In this case the APT key is stored in the files directory of the role.




- name: Ensure key for Docker repository is imported
  apt_key:
    data: "{{ lookup('file', 'docker_apt_pgp.asc') }}"
    id: 0EBFCD88
    state: present




The file lookup removes newlines at the end of the file which breaks
SSH private keys (https://github.com/ansible/ansible/issues/30829).




Here comes a neat trick to avoid it by utilizing YAML syntax:




- name: Add SSH private key
  copy:
    content: |
      {{ lookup('file', users_inventory_dir + '/files/ssh-keys/' + ssh_id ) }}
    dest: "/home/{{ item.username }}/.ssh/id_rsa"
    owner: "{{ item.username }}"
    mode: 0600
  no_log: true




If your file is located in the inventory, you can use the inventory_dir variable inside the lookup:




"{{ lookup('file', inventory_dir + '/../files/ssh-keys/checkmk-ssh.pub') }}"




Note: you can use with_file as alternative to the file lookup, see authorized_key example.




      

    

  
    
      

Environment variables




This example shows how to determine the user on the controller:




"{{ lookup('env', 'USER') }}"




      

    

  
    
      

DNS records




Query DNS A record for example.com:




"{{ lookup('community.general.dig', 'example.com.')}}"




Specific name servers can used as follows:




"{{ lookup('community.general.dig', 'example.com.', '@199.43.135.53,199.43.133.53' )}}"




      

    

  
    
      

DNS TXT records




DNS TXT records are used for various things. For example common email
authentication methods like SPF, DKIM and DMARC are using TXT records.




You can use the dnstxt lookup plugin to check the DKIM record for the domain
linuxia.de and selector mail:




- name: Check whether DKIM DNS entry exists
  debug:
    msg: "{{lookup('dnstxt', 'mail._domainkey.linuxia.de')}}"




The output looks like:




msg: v=DKIM1; p=MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDywbZfxszCUIV3WsMWChd+8iergHXcsWNR/vPtc4gwtbR+3xWd9WNQzGuwhiCBjJcrC79yYnJYhw5vBvVY3YFgV4gD/V3gwWN4NqIb/LoNIgsqLZ8wy+cNnZJnT46K20Dmge1LAV5uxo9Mjq7xtbqTQ1ELI51rTCunos2noZ0JRQIDAQAB




      

    

  
    
      


Conditions




Conditions determine whether a task is executed.




Arguments to conditions are automatically passed through templating. Don't wrap them in curly braces.




Examples:




Whether the key owner exist in the item dict:




when: "'owner' in item"




Whether list is not empty:




when: mylist | length




      

    

  
    
      

Loops




The traditional way for loops in Ansible using with_items, with_dict, with_subelements etc. has been replaced by loop: https://docs.ansible.com/ansible/latest/user_guide/playbooks_loops.html#migrating-from-with-x-to-loop. This has been introduced with Ansible 2.5. Of course you can still use the with_ loops.




Documentation for with_subelements: https://docs.ansible.com/ansible/latest/plugins/lookup/subelements.html




      

    

  
    
      

with_subelements example




Data:




users:
  - username: backuptransfer
    ssh_keys:
      - backup
    ssh_keys_to_remove: []




Task:




- name: Add SSH keys
  authorized_key:
    user: "{{ item.0.username }}"
    key: "{{ lookup('file', inventory_dir + '/files/ssh-keys/' + item.1 + '-ssh.pub') }}"
    state: present
  with_subelements:
    - "{{ users }}"
    - ssh_keys




      

    

  
    
      

Loop over comma separated list




loop: "{{ services.split(',') | map('trim') | list }}"




      

    

  
    
      

Handlers




Handlers are only running if one of the triggering tasks is in the changed status.
Also they are executed at the end of the playbook. So if multiple tasks triggering a handler,
it is only run once.




A typical task executed by a handler is the restart of a service:




- name: Restart Exim4
  service:
    name: exim4
    state: restarted




      

    

  
    
      

Flushing handlers




It is also possible to run handlers in the middle of playbook:




- name: Flush handlers
  meta: flush_handlers




      

    

  
    
      

Commandline




      

    

  
    
      

Ad-hoc mode




With the ad-hoc mode you can execute arbitrary commands on the target hosts.




You can execute commands with ansible -a for all hosts in a group, e.g a simple call of the id program, which doesn't need superuser permissions:




$ ansible shopserver -i production -a id

www1.linuxia.de | CHANGED | rc=0 >>
uid=1001(ansible) gid=1001(ansible) Gruppen=1001(ansible),1002(sysadmin)




Add --become for commands which need to be executed as superuser:




$ ansible shopserver -i production --become -a "grep Failed.password /var/log/auth.log"




Use the pseudo group all to execute the command on all hosts in the given inventory.




      

    

  
    
      

Tags




You can run tasks for certain tags respective skip them.




ansible-playbook --tags=letsencrypt site.yml




ansible-playbook --skip-tags=letsencrypt site.yml




      

    

  
    
      

Tasks




List all tasks which would be executed by the playbook site.yml.




ansible-playbook --tags=letsencrypt --list-tasks site.yml




List tasks tagged with letsencrypt which would be executed by the playbook site.yml.




ansible-playbook --tags=letsencrypt --list-tasks site.yml




      

    

  
    
      

Limit




Limit the execution of the playbook to one or more host groups:




ansible-playbook -i prod --limit myshop,mydb plays/ecommerce.yml




      

    

  
    
      

Vault




      

    

  
    
      

Password file




The location of the Vault password file can be set by:




	commandline argument

	

–vault-password-file




	environment variable

	

ANSIBLE_VAULT_PASSWORD_FILE




	ansible configuration

	

vault_password_file









      

    

  
    
      


Encrypt file




$ ansible-vault encrypt repo-git-id
Encryption successful




      

    

  
    
      


Encrypt single variable




$ ansible-vault encrypt_string --stdin-name mysql_root_password
...




The result looks as follows and you can put that as is into a YAML inventory file:




mysql_root_password: !vault |
  $ANSIBLE_VAULT;1.1;AES256
  62373730376636323437633965356564366233326266663238343765353634646362323234663664
  6239663063343861656234663035323765386366333632630a336363396562653437366339316538
  37383639366532633839313961383465646164626638316238386239303264303463633936316539
  3237356539366266640a306363393136656636346435303862653335333564326638336539313161
  3134




      

    

  
    
      


Decrypt single variable




Unfortunately Ansible doesn't offer a command to decrypt single variables in a YAML file.




Here the yq command comes to rescue.




Sample yq installation on Debian:




apt-get install jq
pip install yq




Now you can select the variable with yp and output it as raw string instead of json (-r option):




yq -r .mysql_root_password production/production.yml




This output can be piped into the ansible-vault command as follows:




yq -r .mysql_root_password production/production.yml | ansible-vault decrypt




This also works for variables on deeper levels of the YAML file. Please note that some keys
with "special characters" like . and - needs to be quoted.




yq -r  '."nginx-servers".hosts."example.linuxia.de".htpasswd_credentials[0].password' production/production.yml | ansible-vault decrypt




      

    

  
    
      

Troubleshooting




      

    

  
    
      

Hangs while gathering facts




Check connection first:




$ ansible -m ping -i live DEBIAN




Exclude hardware from facts:




$ ansible -m setup -i live DEBIAN -a 'gather_subset=!hardware'




      

    

  
    
      


Containers




Ansible Docker Reference: https://docs.ansible.com/ansible/latest/scenario_guides/guide_docker.html




      

    

  
    
      


SELinux




Ansible provides the fact ansible_selinux with information about the SELinux
status. It is a dict with the fields config_mode, mode, policyvers, status
and type.




Typical values are:




 
  
   	
  Distribution / Release 
   
   	
 Status 
   
   	
 Mode 
   
   	
 Type
   
  

 
 
  
   	
  Debian 
   
   	
 disabled 
   
   	
 - 
   
   	
 -
   
  

  
   	
  Ubuntu 
   
   	
 disabled 
   
   	
 - 
   
   	
 -
   
  

  
   	
  Centos 
   
   	
 enabled 
   
   	
 permissive 
   
   	
 targeted
   
  

  
   	
  Fedora 
   
   	
 enabled 
   
   	
 enforcing 
   
   	
 targeted
   
  

 




However this fact requires installation of a SELinux Python library.
For recent releases these are libselinux-python3 for RedHat OS family and
python3-selinux for the Debian OS family.




You can refresh the ansible_selinux fact after the installation of the
library with the setup module:





- name: Refresh SELinux fact
  setup:
    filter: 'ansible_selinux'




      

    

  
    
      

Modules




      

    

  
    
      

apache2_module




- name: Enable fcgid module
  apache2_module:
    name: fcgid
    state: present




      

    

  
    
      


apt




The apt module is used to install APT packages from repositories and from files.




To install multiple packages, pass a list to name:




- name: Install Perl packages needed by mrad
  apt:
    name:
      - dar
      - libappconfig-perl
      - libdate-manip-perl
      - libmime-lite-perl
      - libfilesys-df-perl




Installing from a file requires to transfer the file to the target first:




- name: Copy Sympa package to target
  copy:
    src: "{{ sympa.package_file }}"
    dest: /var/cache/apt/archives




Now you can install the package with the help of the deb parameter:




- name: Install Sympa package from a file
  apt:
    deb: /home/racke/sympa-community/sympa-6.2.48~dfsg-1_amd64.deb




Install a Debian package only on releases that comes with that package:




- name: Install certbot package(s)
  apt:
    name:
      - certbot
  when:
    - ansible_distribution == 'Debian'
    - ansible_distribution_major_version|int >= 10




Purging a package is triggered by the purge parameter:




- name: Purge Sympa package
  apt:
    name: sympa
    state: absent
    purge: yes




To update the APT cache without installing a package:




  - name: Update APT cache
    apt:
      update_cache: yes
    when: ansible_os_family == 'Debian'




      

    

  
    
      


apt-key




The apt_key module manages APT keys for authenticating packages.




Example:




- name: Install APT key for MySQL repository
  apt_key:
    data: "{{ lookup('file', 'mysql-apt-repo.key') }}"
    state: present




This requires gpg installed on the target machine:




- name: Install GnuPG
  apt:
    name:
      - gpg




      

    

  
    
      


apt-repository




Add Ubuntu PPA repository:




- name: Add Linbit DRBD PPA repository
  apt_repository:
    repo: ppa:linbit/linbit-drbd9-stack




In most cases you will also need to update the APT cache when adding the
repository.




Otherwise you wouldn't be able to install packages from the repository.




- name: Add Linbit DRBD PPA repository
  apt_repository:
    repo: ppa:linbit/linbit-drbd9-stack
    codename: focal
  register: drbd_linbit_apt

- name: Update APT cache
  apt:
    update_cache: yes
  when: drbd_linbit_apt.changed




You can also select the filename for the APT sources file configuring the
repository:




- name: Install apt repository for Gitlab
  apt_repository:
    repo: "deb https://packages.gitlab.com/gitlab/gitlab-ce/ubuntu/ focal main"
    filename: gitlab-repo




The resulting file name would be /etc/apt/sources.list.d/gitlab-repo.list.




      

    

  
    
      


assert




The assert module checks whether given conditions are met. It fails if not.




- name: Ensure that role is executed on Debian Jessie or Debian Stretch
  assert:
    that:
      - ansible_distribution == 'Debian'
      - ansible_distribution_major_version == '8' or ansible_distribution_major_version == '9'
    msg: "Debian Jessie or Debian Stretch required for docker role"




      

    

  
    
      


authorized_key (SSH authorized keys)




The authorized_key module allows you to add or remove keys from user accounts.




- name: "Add SSH keys"
  authorized_key:
    user: interch
    state: present
    key: "{{ item }}"
  with_file:
    - racke-ssh.pub
    - linuxia-ssh.pub




      

    

  
    
      


blockinfile




The blockinfile module is similar to the lineinfile module, but allows you to manipulate multiple lines in a file.





Example:




- name: Ensure that SSH port is in user's config
  blockinfile:
    path: "/home/{{ username }}/.ssh/config"
    block: |
      Host *.example.com
        Port 7494
    create: yes
    mode: 0644
  become_user: "{{ username }}"




If the file doesn't exist already, it be will created (because of create set to yes). In that case the content of the SSH config file would look like:




# BEGIN ANSIBLE MANAGED BLOCK
Host *.example.com
  Port 7494
# END ANSIBLE MANAGED BLOCK




If you want to put multiple entries in a single file (either through
separate tasks or by running the blockinfile task in a loop), you need
to add an unique marker to the task, e.g.:




- name: Ensure that SSH port is in user's config
  blockinfile:
    path: "/home/{{ username }}/.ssh/config"
    block: |
      Host *.example.com
        Port 7494
    marker: "# {mark} ANSIBLE MANAGED BLOCK FOR EXAMPLE.COM"
    create: yes
    mode: 0644
  become_user: "{{ username }}"




Now the output would look like:




# BEGIN ANSIBLE MANAGED BLOCK FOR EXAMPLE.COM
Host *.example.com
  Port 7494
# END ANSIBLE MANAGED BLOCK FOR EXAMPLE.COM




      

    

  
    
      


copy




The copy module copies files to the target.




      

    

  
    
      


cpanm




The cpanm module allows you to manage Perl modules.




- name: Install Dancer2 module with cpanm
  cpanm:
    name: Dancer2




You can also specify a minimum version:




- name: Install Dancer2 module with cpanm
  cpanm:
    name: Dancer2
    version: '0.301000'




It is not possible to use a list of Perl modules in the name parameter, so
you need to run the task in a loop:




- name: Install Dancer2 plugins with cpanm
  cpanm:
    name: "{{ item }}"
  loop:
    - Dancer2::Plugin::Email
    - Dancer2::Plugin::Auth::Extensible
    - Dancer2::Plugin::GraphQL




      

    

  
    
      


debconf




The debconf module allows you to preseed values for the debconf configuration.




- name: Preseed Debconf values for Sympa (wwsympa_url)
  debconf:
     name: sympa
     question: wwsympa/wwsympa_url
     value: "https://{{ common.web.domain }}/sympa"
     vtype: string




      

    

  
    
      


docker_container




The docker_container module




Start Elasticsearch container with image from GitHub:




- name: Ensure that Elasticsearch container is running
  docker_container:
    name: "esdemo"
    image: "elasticsearch:7.10.1"
    state: 'started'
    restart_policy: always




You can also use registries other than Docker hub for the images, e.g. the
Elasticsearch registry at https://www.docker.elastic.co/r/elasticsearch:




- name: Ensure that Open Source Elasticsearch container is running
  docker_container:
    name: "esdemo"
    image: "docker.elastic.co/elasticsearch/elasticsearch-oss:7.10.1-amd64"
    state: 'started'
    restart_policy: always




      

    

  
    
      


fetch




The fetch module retrieves a file from a remote host.




This module doesn't support check mode. Recursive fetching is not supported.




Example:




- name: Upload ~/.gnupg archive to Ansible Controller
  fetch:
    src: '{{ reprepro_home + "/" + reprepro_gpg_snapshot_name }}'
    dest: '{{ reprepro_gpg_snapshot_path + "/" + reprepro_gpg_snapshot_name }}'
    flat: True




      

    

  
    
      


file




The file module manages files and directories on the target.




Create a directory:




- name: Ensure that installation directory exists
  file:
    state: directory
    path: /usr/local/sympa
    owner: sympa
    group: sympa
    mode: 0755




      

    

  
    
      


find




The find module locates files and directories. It supports a subset of the functionality of the Unix find command.




Example:




 - name: Get list of available Apache modules
      find:
        file_type: 'file'
        paths: '/etc/apache2/mods-available/'
        patterns: '*.load'
      register: apache_mods_available




You can specify multiple paths and patterns by passing a list to these parameters.




In order to extract all file paths from the result use the map filter:




- name: Paths for Apache modules
  set_fact:
    apache_mods_paths: "{{ apache_mods_available.files | map(attribute='path') | list }}"




This gives you a list of full paths:




- /etc/apache2/mods-available/fcgid.conf
- /etc/apache2/mods-available/fcgid.load
- /etc/apache2/mods-available/http2.conf
- /etc/apache2/mods-available/http2.load




In order to get only the filenames, apply the basename filter as well:





- name: Filenames for Apache modules
  set_fact:
    apache_mods_files: "{{ apache_mods_available.files | map(attribute='path') | map('basename') | list }}"




Now the resulting list is:




- fcgid.conf
- fcgid.load
- http2.conf
- http2.load




      

    

  
    
      


get_url




The
get_url module download files to the target.




- name: Download Debian 10 image for KVM
  get_url:
    url: https://cdimage.debian.org/cdimage/openstack/current-10/debian-10-openstack-amd64.qcow2
    checksum: sha256:85c43e90a13f5c1021afd07f843ace498b4bca4ff71b8e5c50d70e2566a304aa
    dest: /var/lib/libvirt/images/debian10.qcow2




      

    

  
    
      


getent




Determine the home directory of the remote user:




- name: Retrieve account information for remote user
  getent:
    database: passwd
    key: "{{ ansible_ssh_user }}"
    split: ":"

- name: Set fact for home directory
  set_fact:
    user_home: "{{ getent_passwd[ansible_ssh_user][4] }}"




      

    

  
    
      


git




The git module clones a Git repository.




Notable parameters are:




	depth

	

if set, creates a shallow clone









      

    

  
    
      

git_config




Updates Git configuration files, e.g user name and email:




- name: Configure Git username for etckeeper commits
  git_config:
    name: user.name
    scope: global
    value: "{{ git_user_name }}"

- name: Configure Git email for etckeeper commits
  git_config:
    name: user.email
    scope: global
    value: "{{ git_user_email }}"




The scope setting might be a bit confusing - global refers to the user's global configuration ~/.gitconfig, while system refers to /etc/gitconfig.




      

    

  
    
      

group




Creates a user group.




- name: Create unix group for Sympa
  group:
    name: sympa




      

    

  
    
      


hostname




The
hostname module sets the hostname of the target system, e.g:




- name: Set hostname
  hostname:
    name: "{{ inventory_hostname_short }}"




The variable inventory_hostname_short contains the first part of the fully qualified domain name (FQDN), e.g. foo for foo.linuxia.de.




This adjusts the hostname in /etc/hostname and creates or updates
/etc/machine-info:




$ cat /etc/hostname
foo
$ cat /etc/machine-info
PRETTY_HOSTNAME=foo




      

    

  
    
      


import_role, include_role




The import_role module
loads the given role similar to roles specified with the roles: keyword.




With import_role Ansible checks first whether the role is available before executing the playbook.




The include_role loads a role dynamically.




Instead of executing the role as usual you can run a specific task file:




- name: Run task file dkim-key-pair.yml from exim-dkim role
  import_role:
    name: exim-dkim
    tasks_from: dkim-key-pair.yml




      

    

  
    
      

import_tasks




The import_tasks module allows you to import tasks from another task file than main.yml:




- name: Install systemd timers
  import_tasks: timers.yml




import_tasks can not run in a loop.




This is useful to group related tasks and keep the main task file lean.




In addition you can restrict the scope to a subset of the targets,
e.g. based on the distribution.




- name: Initialize PostgreSQL cluster
  import_tasks: initialize.yml
  when: ansible_os_family in ['Alpine', 'RedHat', 'FreeBSD', 'Suse']




      

    

  
    
      


known_hosts




Ansible provides the known_hosts module for adding or removing host keys from the ~/.ssh/known_hosts file.




- name: Add Git remote to known hosts
  known_hosts:
    name: 'git.linuxia.de'
    key: '[git.linuxia.de] ecdsa-sha2-nistp256 AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBG5jcaKO5t0A2NOxIPFFoBz6tKFUOZygTGZeBEpH9ib3wO98sWAdi8QtjKY6WpMIe5Z7ZvKC+awsvaBmzEfUVDE='
    hash_host: yes




The ECDSA host key is located in the file /etc/ssh/ssh_host_ecdsa_key.pub on the server. Don't use the RSA host key, which might not accepted.




Another use case is a backup server which pulls backups from a number of clients with SSH.
The SSH public key of any client needs to be added to the ~/.ssh/known_hosts file of the server:




- name: Add known hosts entries for backup clients
  known_hosts:
    name: "{{ item }}"
    key: "{{ item }}: {{ hostvars[item].ssh_host_key }}"
    hash_host: yes
  with_items: "{{ groups['backup_clients'] }}"
  when:
    - "'backup_servers' in group_names"




      

    

  
    
      


lineinfile




The lineinfile module add or updates a particular line in a text file.




It isn't applicable to the following use cases:




	

Replacing multiple occurrences of the same line (see replace)





	

Replacing a block with multiple lines blockinfile (see blockinfile)





	

Manipulating files with structured data such as XML and JSON










- name: Configure proxy (Debian, Ubuntu)
  lineinfile:
    dest: /etc/environment
    regexp: '(?i)^no_proxy='
    line: "no_proxy=example.com,localhost"
  when: ansible_os_family == 'Debian'




This is an example where we add the report email address from the variable unattended_upgrades_report_email to the configuration of the unattended-upgrades Debian package:




- name: Add email address for reports on upgrades
  lineinfile:
    dest: "/etc/apt/apt.conf.d/50unattended-upgrades"
    regexp: '^(//)?Unattended-Upgrade::Mail\s+"(.*)";'
    line: "Unattended-Upgrade::Mail \"{{ unattended_upgrades_report_email }}\";"




The orignal line after installation looks like that:




//Unattended-Upgrade::Mail "root";




So the regular expression needs to cover both the option with or without the // at the beginning of the line.




Another example:




- name: Adjust PHP FPM configuration
  lineinfile:
    path: "/etc/php-fpm.d/www.conf"
    line: "catch_workers_output = yes"
    state: present
    regexp: "^;?catch_workers_output"




This makes sure that the line catch_workers_output = yes appears in the configuration file. It replaces an existing line by regular expression, so it would work whether the configuration directive is commented out or not:




	

catch_workers_output = no





	

;catch_workers_output = yes










In some cases it may be warranted to add multiple lines to a file by using
lineinfile in a loop.




Inserting a list of cluster nodes into /etc/hosts could be such a case:




- name: Ensure that the node hostnames can be resolved (essential for DRBD/OCFS2 clustering)
  lineinfile:
    path: /etc/hosts
    line: '{{ hostvars[item].ansible_default_ipv4.address }} {{ item }}'
    regexp: '^{{ hostvars[item].ansible_default_ipv4.address | regex_escape }}'
    insertbefore: '^$'
    firstmatch: yes
  loop: "{{ groups['mycluster'] }}"




The combination of insertbefore: '^$' and firstmatch: yes instructs
lineinfile to add the new lines before the first empty line in /etc/hosts.




The pristine file for host debian after initial installation may look like
that:




127.0.0.1    localhost
127.0.1.1    debian.localdomain debian

# The following lines are desirable for IPv6 capable hosts
::1     localhost ip6-localhost ip6-loopback
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters




And after you added node1, node2, node3
from the group mycluster:




127.0.0.1    localhost
127.0.1.1    debian.localdomain debian
10.1.118.11 node1
10.1.118.12 node2
10.1.118.13 node3

# The following lines are desirable for IPv6 capable hosts
::1     localhost ip6-localhost ip6-loopback
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters




      

    

  
    
      


locale_gen




Debian only enables the basic locales by default. You can use the locale_gen
module to add needed locales:




- name: Ensure that German locale exists
  locale_gen:
    name: de_DE.UTF-8
    state: present




      

    

  
    
      


mysql_db, mysql_user




Ansible provides the mysql_user module and the mysql_db module for creating MySQL roles and databases.




Create database:




- name: Create database for Sympa
  mysql_db:
    name: sympa
    state: present




Create user for the Sympa database:




- name: Create MySQL user for Sympa
  mysql_user:
    name: sympa
    priv: 'sympa.*:ALL'
    password: nevairbe
    state: present




Create remote user for replicating the Sympa database:




- name: Add remote replication user
  mysql_user:
    name: replicator
    host: '10.0.2.20'
    password: nevairbe
    priv: "sympa:*:REPLICATION SLAVE"
    state: present




Dump database:




- name: Create a dump from Sympa database
  mysql_db:
    name: sympa
    state: dump
    target: "/home/backup/sympa-{{ ansible_date_time.date }}.sql"




Please note that the dump file is world readable, so you need to protect
sensitive data with restricted permissions for the dump directory.




      

    

  
    
      


mysql_replication




Determine MySQL slave status.




- name: Get slave status
  mysql_replication:
    mode: getslave
  register: mysql_slave_info




- set_fact:
    mysql_slave_health: |-
      {% if mysql_slave_info.Slave_IO_Running == 'Yes' and mysql_slave_info.Slave_SQL_Running == 'Yes' %}UP{% else %}DOWN{% endif %}




      

    

  
    
      


package




The package module is a generic package manager for supported distributions.




Simple tasks like installing Git can be accomplished with it, but software might be packaged with different names in the distributions.




- name: Ensure that Git is installed
  package:
    name:
      - git




Specific modules by distributions are:




 
  
   	
 Distributions 
   
   	
 Ansible module 
   
  

  
   	
 Alpine 
   
   	
 apk 
   
  

  
   	
 ArchLinux 
   
   	
 pacman 
   
  

  
   	
 Debian 
   
   	
 apt 
   
  

  
   	
 Gentoo 
   
   	
 portage 
   
  

  
   	
 RedHat 
   
   	
 yum 
   
  

  
   	
 Suse/SLES 
   
   	
 zypper 
   
  

  
   	
 Ubuntu 
   
   	
 apt 
   
  

 




      

    

  
    
      


pam_limits




This module changes the Linux PAM limits in the file
/etc/security/limits.conf (or the file specified by the dest parameter).




To impose soft and hard limits for the number of open files to user foo:




- name: ulimits - Add soft value of maximum open files to user foo
  pam_limits:
    domain: foo
    limit_type: soft
    limit_item: nofile
    value: "1024"

- name: ulimits - Add hard value of maximum open files to user foo
  pam_limits:
    domain: foo
    limit_type: hard
    limit_item: nofile
    value: "2048"




Please note that this module doesn't indicate possible changes in check mode.




Available limit types are:




 
  
   	
 core 
   
   	
 limits the core file size (KB) 
   
  

  
   	
 data 
   
   	
 max data size (KB) 
   
  

  
   	
 fsize 
   
   	
 maximum filesize (KB) 
   
  

  
   	
 memlock 
   
   	
 max locked-in-memory address space (KB) 
   
  

  
   	
 nofile 
   
   	
 max number of open file descriptors 
   
  

  
   	
 rss 
   
   	
 max resident set size (KB) 
   
  

  
   	
 stack 
   
   	
 max stack size (KB) 
   
  

  
   	
 cpu 
   
   	
 max CPU time (MIN) 
   
  

  
   	
 nproc 
   
   	
 max number of processes 
   
  

  
   	
 as 
   
   	
 address space limit (KB) 
   
  

  
   	
 maxlogins 
   
   	
 max number of logins for this user 
   
  

  
   	
 maxsyslogins 
   
   	
 max number of logins on the system 
   
  

  
   	
 priority 
   
   	
 the priority to run user process with 
   
  

  
   	
 locks 
   
   	
 max number of file locks the user can hold 
   
  

  
   	
 sigpending 
   
   	
 max number of pending signals 
   
  

  
   	
 msgqueue 
   
   	
 max memory used by POSIX message queues (bytes) 
   
  

  
   	
 nice 
   
   	
 max nice priority allowed to raise to values: [-20, 19] 
   
  

  
   	
 rtprio 
   
   	
 max realtime priority 
   
  

  
   	
 chroot 
   
   	
 change root to directory (Debian-specific) 
   
  

 




      

    

  
    
      


pip




The pip module install and removes Python packages.




- name: Ensure that SSLyze is installed
  pip:
    name: sslyze




      

    

  
    
      


portage




The
portage module manages packages on Gentoo through the emerge command.




In general the "packages" are compiled from sources, so it can take a
long time to install a Gentoo package.




- name: Ensure that Git is installed
  portage:
    name:
      - git




      

    

  
    
      


postgresql_db, postgresql_user




Ansible provides the postgresql_user module and the postgresql_db module for creating PostgreSQL roles and databases.




Creating a role can be as simple as in the following example:




- name: Create PostgreSQL role for Sympa
  postgresql_user:
    name: sympa




Now you can create a database for this role:




- name: Create PostgreSQL database for Sympa
  postgresql_db:
    name: sympa
    encoding: UTF-8
    lc_collate: en_US.UTF-8
    lc_ctype: en_US.UTF-8
    template: template0
    owner: sympa
    state: present




      

    

  
    
      


postgresql_query




You can ensure that a column exists in a table with using this module:




- name: Add unsubscribe_link field to subscriber table
  postgresql_query:
    db: sympa
    query: 'ALTER TABLE subscriber_table ADD COLUMN IF NOT EXISTS
  unsubscribe_link text'
  become: true
  become_user: postgres
  vars:
    ansible_ssh_pipelining: true




      

    

  
    
      


reboot




The
reboot
module reboots the target host.




The output for a successful reboot looks like that:




ok: [buster-test-box] =>
  msg:
    changed: true
    elapsed: 30
    failed: false
    rebooted: true




      

    

  
    
      


replace




The replace module replace all instances of a pattern within a file.




E.g. if you want to prepend every line in a file with #:




- replace:
    path: "/home/racke/example.txt"
    regexp: '^(.*)$'
    replace: '# \1'




      

    

  
    
      


service




The service module start and stops services.




On hosts with systemd, the task is delegated to the
systemd module.




Services are not always enabled and started when you install the corresponding package,
so add a task to ensure that this is the case:




- name: Ensure that rsyslog is installed
  package:
    name: rsyslog

- name: Ensure that rsyslog is enabled and running
  service:
    name: rsyslog
    state: started
    enabled: yes




      

    

  
    
      

sleep parameter




Some services have stop scripts that terminate immediately even before the
actual process is vanished. This can prevent a successful start when you
restart the service.




To alleviate this problem you can add a value for the sleep parameter:




- name: restart mysql
  service:
    name: {{ mysql_daemon }}
    state: restarted
    sleep: 5




      

    

  
    
      


selinux




Disable SELinux:




- name: Disable SELinux (Fedora)
  selinux:
    state: disabled
   when: ansible_distribution == 'Fedora'




      

    

  
    
      


setup




The setup module allows you to gather facts on the remote hosts. This is done automatically at the beginning of a play unless you disable it with setting gather_facts to False.




In some cases you might need to refresh the facts. You can find one example
in the SELinux section.




Another one follows:




# Vagrant box debian/buster64 has "buster/sid" in /etc/debian_version
- name: Ensure that base-files package is up-to-date for the Debian buster assertion
  apt:
    name:
      - base-files
    state: latest
  register: basefiles

- name: Reread facts
  setup:
  when:
    basefiles.changed




Installing base-files changes the content of /etc/debian_version from buster/sid to 10.0,
but this is not reflected in the ansible_distribution_major_version variable.




Without refreshing the facts the following assertion would fail in a fresh buster VM:




- name: Role requires Debian Buster
  assert:
    that:
      - ansible_distribution == 'Debian'
      - ansible_distribution_major_version == '10'
    fail_msg: "Distribution {{ ansible_distribution }}, major version: {{ ansible_distribution_major_version }}"




      

    

  
    
      


service_facts




You sometimes need to find out the status of the services, especially in a heterogeneous environment. The service_facts sets a dict with all existing services, whether they are running or not.




So you can use that to determine whether the service exists at all and and
is in a certain state:




- name: Populate service facts
  ansible.builtin.service_facts:

- name: Adjust firewalld settings
  import_role:
    name: firewalld
  when:
    - "'firewalld.service' in ansible_facts.services"
    - ansible_facts.services['firewalld.service']['state'] == 'running'




      

    

  
    
      


synchronize




Reference: synchronize module




This can be used to synchronize backups from server A (sync_src_server) to server B (sync_dest_server). Both need to be part of the inventory:




- name: Synchronize
  synchronize:
    mode: push
    src: "/data/backups/"
    dest: "/srv/backups/server-a/"
   delegate_to: "{{ sync_src_server }}"
   when: inventory_hostname == sync_dest_server




Ensure that rsync is installed on both hosts:




- name: Ensure that rsync is installed on both hosts
  package:
    name: rsync
  when: inventory_hostname in [sync_src_server, sync_dest_server]




      

    

  
    
      


systemd




The systemd module is the similar to the service module, but is specifically used to manage systemd services.




After changing an unit file, let systemd know about it:




- name: Reload systemd daemon on unit file changes
  systemd:
    daemon_reload: true




This is the equivalent to the systemctl daemon-reload command.




      

    

  
    
      


template




The
template module generates files from templates.




The template needs to exists on the Ansible controller. There is remote_src
parameter as for the copy module.




      

    

  
    
      


timezone




- name: Set timezone to Europe/Berlin
  timezone:
    name: Europe/Berlin




      

    

  
    
      


ufw




Manages ufw firewall rules.




- name: Open firewall port for IMAP/TLS
  ufw:
    rule: allow
    port: '993'
    proto: tcp




      

    

  
    
      


unarchive




The unarchive module unpacks an archive.




Please make sure that the file permissions are correct inside the archive. Although there is a mode parameter, it is pretty much useless for software archives as the same mode is applied to files and directories.




As the unzip binary is not always installed by default (e.g. Debian), make sure it is installed first when dealing with zip archives.




For example:




- name: Install unzip
  apt:
    name:
      - unzip
  when:
    - software_archive is match('.*\.zip')




Alpine Linux uses tar provided by busybox, which is not sufficient to unpack
tar archives with this module.




Install GNU tar on Alpine Linux:




- name: Install GNU tar on Alpine Linux
  apk:
    name: tar




FreeBSD has a similar problem:




fatal: [freebsd-test-box]: FAILED! => changed=false
  msg: Failed to find handler for "/usr/local/src/sympa/sympa-6.2.59b.1.tar.gz". Make sure the required command to extract the file is installed. Command "/usr/bin/unzip" could not handle archive. Command "/usr/bin/tar" detected as tar type bsd. GNU tar required.




Install GNU tar on FreeBSD:




- name: Install GNU tar on FreeBSD
  pkgng:
    name: gtar




      

    

  
    
      


uri




The uri module interacts with web services.




Example:




- name: Create schema fields
  uri:
    url: "http://localhost:{{ solr_port }}/solr/{{ solr_core }}/schema"
    method: "POST"
    body_format: json
    body: "{{ { 'add-field' : solr_rest_fields} | to_json }}"




It can also be used to test correctness of web server configuration:




- name: Test redirection of / to /sympa
  uri:
    url: "https://lists.linuxia.de"
  register: sympa_redirection
  failed_when: not sympa_redirection.redirected or sympa_redirection.url != "https://lists.linuxia.de/sympa"




HTTP headers can be added as dict:




- name: Trigger list overview
  uri:
    url: "https://lists.linuxia.de/sympa/lists"
    method: "GET"
    headers:
      referer: "https://lists.linuxia.de/sympa"




      

    

  
    
      


user




The user module creates users on the target system.




Create an user:




- name: Create unix user for Sympa
  user:
    name: sympa
    group: sympa
    shell: /bin/bash
    createhome: yes
    password_lock: yes




      

    

  
    
      


xml




The xml module manipulates XML files and strings.




      

    

  
    
      


zypper




The
zypper module manages packages on Suse distributions (OpenSUSE and SLES).




The syntax is similar to the package module.




      

    

  
    
      


zypper_repository




The
zypper_repository module manages repositories on Suse distributions
(OpenSUSE and SLES).




      

    

  
    
      

Roles




The location of the parent directory for the roles can be configured through the roles_path variable in the Ansible configuration file:




[defaults]
roles_path = roles




      

    

  
    
      


ansible-galaxy command




Install role from Github repository:




ansible-galaxy install -p roles git+https://github.com/racke/ansible-role-clamav.git




      

    

  
    
      

External Roles




Roles from Ansible Galaxy can be integrated as follows:




	

Eintrag in roles/requirements.yml z.B.










- src: geerlingguy.memcached
  version: "1.0.8"




	

Ansible Galaxy Installation:










 ansible-galaxy install -p roles -r roles/requirements.yml




	

Git commit, e.g.:










git add roles/requirements.yml roles/geerlingguy.memcached
git commit -m "Add external role for installing memcached."




	

Git tag, e.g.:










git tag -a -s -m "Role geerlingguy.memcached, version 1.0.8" ROLE_GEERLINGGUY_MEMCACHED_1_0_8




      

    

  
    
      

Upgrades




If you want to upgrade that role later, you need to bump up the version in roles/requirements.yml and rerun the ansible-galaxy command with the -f or --force flag:




ansible-galaxy install -f -p roles -r roles/requirements.yml




      

    

  
    
      

Wrapping external roles





It is quite useful to wrap external roles into your own role with the import_role module. The following role demonstrates that:




	

Ensure that the default password has been overridden





	

Import the role with variables specific for your servers





	

Execute additional tasks (here we install backup package)










- name: Assert that default root password has been changed
  assert:
    that: "mysql_root_password != 'root'"
    fail_msg: 'Default value for mysql_root_password'

- name: Run external MySQL role
  import_role:
    name: geerlingguy.mysql
  vars:
    mysql_packages:
      - mariadb-server
      - mariadb-client

- name: Install automysqlbackup
  apt:
    name: automysqlbackup




You can also check in the wrapping role that the tasks in the imported role are not executed if a certain condition is met. For an example, it doesn't make sense to install htpasswd when you don't have credentials configured:




 - name: Run external HTTP basic authentication role
   import_role:
     name: geerlingguy.htpasswd
   when:
    - htpasswd_credentials




Note: the role will be still imported, but all tasks are going to be skipped.




      

    

  
    
      

Load variables from a role




If you need the variables from a role without actually executing the role, you can use the following workaround:




roles:
  # including sympa role for defaults, but skipping it
  - role: sympa
    when: false




      

    

  
    
      

Monitoring with OMD




With this role we install a check_mk agent on the system, which runs as systemd service instead of as xinetd.




The agent is accessed remotely by SSH from the monitoring host, specified by the variables omd_url and omd_version.




roles/monitoring/tasks/main.yml




---

- name: Install check-mk-agent
  apt:
    deb: "{{ omd_url }}/check_mk/agents/check-mk-agent_{{ omd_version }}-1_all.deb"
  tags:
    - monitoring

- name: Enable and start systemd socket
  systemd:
    name: "check_mk.socket"
    enabled: yes
    state: started
  tags:
    - monitoring

- name: Add SSH key for monitoring
  authorized_key:
    user: root
    key: "{{ lookup('file', 'checkmk-ssh.pub') }}"
    key_options: 'command="/usr/bin/check_mk_agent"'
    state: present




Sample playbook:




---
- hosts: all

  vars:
    omd_version: "1.5.0p7"
    omd_url: "https://monitor.linuxia.de/omd"

  roles:
    - monitoring




      

    

  
    
      


Best Practices




	

Use YAML callback plugin










      

    

  